

EN62368-1

SS EN62368-1

UL 61010-1

FEATURES

- Universal 3x320-600VAC or 450-800VDC Input voltage
- Active PFC, PF>0.95
- Operating ambient temperature range: -30°C to +70°C,
 60°C @ 100% load without derating
- Standard DIN-Rail mounting
- High efficiency, high reliability
- LED indicator for output status
- 150% peak power lasts for 4.5s
- Output short circuit, over-current, over-voltage, over-temperature protection
- Supporting parallel (2+1 current sharing) and series application
- Fault alarm function, DC OK, against backflow voltage
- Double-sided conformal coating, salt-spray proof
- 485 Communication, remote shutdown (PS ON)
- Operating altitude up to 5000m
- OVC III (Safety according to EN61010)
- 3 years warranty
- Safety according to ANSI/ISA 71.04-2013 G3
- Safety according to IEC/UL62368, EN61010, UL508

LITF480-26Bxx is Mornsun AC-DC three-phase Din-Rail switching power supply. It features cost-effective, high efficiency and high reliability. With 150% power reserve, enough to support starting DC motor or capacitive load and other heavy load. These converters offer excellent EMC performance and meet IEC/UL62368, EN61010, UL508 standards and they are widely used in areas of industrial control equipment, factory automation and mechanical and electrical equipment and other industrial control fields.

Selection (Guide					
Certification	Part No.	Output Power (W)	Nominal Output Voltage and Current (Vo/Io)	Output Voltage Adjustable Range (V)	Efficiency at 400VAC (%) Typ.	Max. Capacitive Load (µF)
	LITF480-26B24		24V/20A	24-28	95	20000
EN/UL	LITF480-26B36	480	36V/13.3A	36-42	95.3	13000
	LITF480-26B48		48V/10A	48-56	95.6	10000

Input Specifications	3				
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Input Voltage Range	Rated input (Certified voltage)	380		480	\/AC
	AC input	320		600	VAC
	DC input	450		800	VDC
Input Voltage Frequency	AC input rated frequency	50		60	Hz
	AC input	45		63	HZ
	Input rated current		_	1.0	
Input Current	400VAC		-	1.0	Α
	480VAC		-	0.8	

MORNSUN®

Inrush Current	400VAC	Cold start		1.34	10		
	480VAC	Cold start		1.34	10		
Power Factor	400VAC	Normal temperature,	PF≥0.95				
	480VAC	rated load	PF ≥ 0.95				
Leakage Current	480VAC	480VAC		<2mA			
Hot Plug				Unavailable			

Item	Operating Conditions	Min.	Тур.	Max.	Unit	
Output Voltage Accuracy Full load range			±1			
Line Regulation	Rated load		±0.5		%	
oad Regulation 0% - 100% load			±0.5			
Ripple & Noise*	20MHz bandwidth (peak-to-peak value)		100		mV	
Temperature Coefficient			±0.03		%/℃	
Minimum Load			0		%	
Dynamic Minimum Load		10			%	
Chain alloy Doyyou	400VAC		8.2	12	w	
Standby Power	480VAC		10	15	VV	
II-I-I Ti	400VAC	18	22			
Hold-up Time	480VAC	18	22		ms	
Short Circuit Protection		Constant curr	Constant current mode, continuous, self-recove			
Over-current Protection		4.5s of normal o	120% - 150% Io, enter constant current mode after 4.5s of normal output, automatic recover after fault condition is removed			
		· · · · · · · · · · · · · · · · · · ·	≥150% lo, enter constant current mode, automat recover after fault condition is removed			
	24V	≤35\	/DC (Hiccup,	self-recover))	
Over-voltage Protection	36V	≤53\	≤53VDC (Hiccup, self-recover)			
	48V	≪60\	≤60VDC (Hiccup, self-recover))	
Over temperature Pretection	Over-temperature Protection start			85	°C	
Over-temperature Protection	Over-temperature Protection release	65		~ °C		

Note: "The "Tip and barrel method" is used for ripple and noise test, output parallel 47uF electrolytic capacitor and 0.1uF ceramic capacitor, please refer to Enclosed Switching Power Supply Application Notes for specific information.

General	Specification	ns				
Item		Operating Conditions	Min.	Тур.	Max.	Unit
	Input - 😩	Floatric strongth toot for Imin Toulance of worth CEDA	2500			
Isolation	Input - Output	Electric strength test for 1min., leakage current<5mA	4000			\/\
Test	Output - 😩	Electric strength test for 1min., leakage current<10mA	500			VAC
	Output - DC OK	Electric strength test for 1min., leakage current<1mA	500			
	Input - 😩	Environment temperature: 25±5°C	50			
Insulation	Input - Output	Relative humidity: <95%, non-condensing	50			$\mathbf{M} \Omega$
Resistance	Output - 😩	Test voltage: 500VDC	50			
Operating Te	emperature		-30		70	°C
Storage Temperature			-40		85	C
Storage Humidity		Non-condensing	20		90	%RH
Operating Humidity		Non-condensing	10		95	/ol₹П
Switching Frequency*		PFC	40		300	1.11-
OWNCI III IG I I	oquolicy	DC-DC	60		150	kHz

MORNSUN®

Day yan Dayadha ay	Operating temperature derating	+60°C to +70°C	2.5			%/℃		
Power Derating	Input voltage derating	320VAC - 350VAC	0.667			%/VAC		
Safety Standard*				UL61010-1, UL61010-2-201 safety approved & EN62368-1 (Report) Design refer to IEC/UL62368-1, EN61010-1, EN61010-2-201, UL508				
Safety Class			CLASS I, AI	NSI/ISA71.04	l-2013			
MTBF	MIL-HDBK-217F@25℃	MIL-HDBK-217F@25℃			≥250,000 h			
Pollution Degree	2							
Note:1*.The power supply ho 2*.Indoor use meets UL 61010	as two converters with two different switching freq O certification standards.	juencies.						

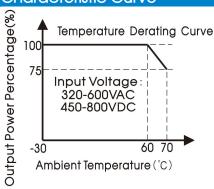
Environmental Characteristics					
Item	Operating Conditions	Standard			
Sinusoidal Vibration	10 - 200Hz, 2g, three directions of X, Y, Z axis	GB2423.10, IEC60068-2-6			

Mechanical Specifications				
Case Material	Metal (AL5052, SPCC)			
Dimensions	80.0mm x 124.0mm x 127.0mm			
Weight	1250g (Typ.)			
Cooling Method	Free air convection			

Electromo	agnetic Compatibility (EMC)		
	CE	CISPR32/EN55032 CLASS B	
	RE	CISPR32/EN55032 CLASS B	
Emissions	Harmonic current	IEC/EN61000-3-2 CLASS A	
	Voltage flicker	IEC/EN61000-3-3 Fulfilled	
	ESD	IEC/EN 61000-4-2 Contact ±8KV/Air ±15KV	perf. Criteria A
	RS	IEC/EN 61000-4-3 20V/m	perf. Criteria A
	EFT (Input)	IEC/EN 61000-4-4 ±4KV	perf. Criteria A
	EFT (Output)	IEC/EN 61000-4-4 ±2KV	perf. Criteria A
	EFT (DC OK)	IEC/EN 61000-4-4 ±2KV	perf. Criteria A
Immunity*	Surge (Input)	IEC/EN 61000-4-5 line to line ±2KV/line to PE ±4KV	perf. Criteria A
,	Surge (Output)	IEC/EN 61000-4-5 Vo+ to Vo- ±500V; Vo+/Vo- to PE ±1KV	perf. Criteria A
	Surge (DC OK)	IEC/EN 61000-4-5 DC OK to PE ±1KV	perf. Criteria A
	CS	IEC/EN61000-4-6 20 Vr.m.s	perf. Criteria A
	Voltage dips, short interruptions and voltage variations immunity	IEC/EN61000-4-11 0% 70%	perf. Criteria A
	Intercom interference test	MS-SOP-DQC-007	perf. Criteria A

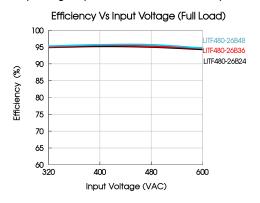
Functional Specifi	ications					
Item	Operating Conditions		Min.	Тур.	Max.	Unit
Remote Control Switch	0 - 0.8VDC power turn-on		0		0.8	VDC
	4 - 20VDC power turn-off		4		20	VDC
DC OK Signal	Full input voltage range,	DC OK power on		0.95Vo - Vo		
	full load range	DC OK power off		<0.90Vo		
Oring*		Support direct parallel use, achieve 2+1 parallel redundancy				

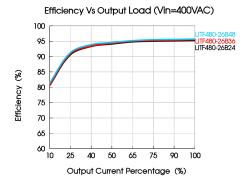
MORNSUN®

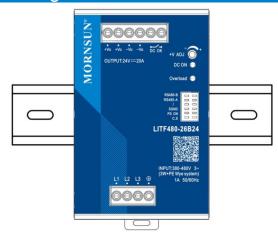

LITF480-26Bxx Series

Current Sharing Accuracy*	When multiple units are connected in parallel, the sub-modules shunt more than 50% of the rated load			±5		%		
		Normal work	Green On					
LED Signal	Main output status indication	Peak power operation or about to enter over temperature protection		Red On				
		Power Off (No AC input) or PS ON Off	Turn-off					
RS485-B, RS485-A		RS485 communication						
Note: 1*. For all applications, ple	ease refer to LITF480-26E	Bxx Series Power Supply Application Notes	•					

2*. When multiple units work with current sharing, the output voltage deviation of each power supply working alone shall not exceed 100mV.

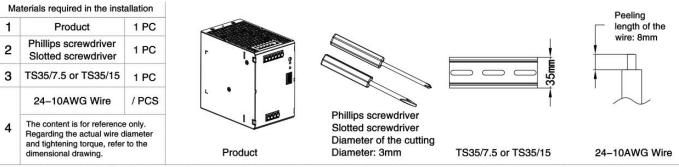

Product Characteristic Curve



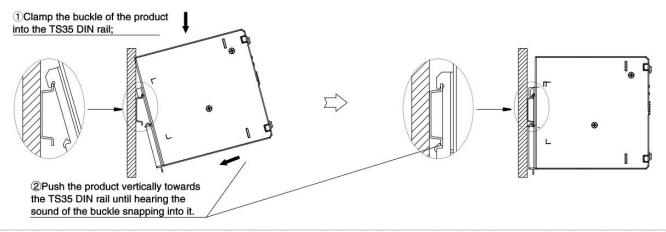

Note: 1. With input voltage between 320 - 350VAC/450 - 495VDC the output power must be derated as per the temperature derating curves;

- 2. This product is suitable for applications using natural air cooling, for applications in closed environment please consult Mornsun's FAE;
- 3. The operating temperature and the ambient temperature are determined according to the air temperature at 2cm below the power supply.

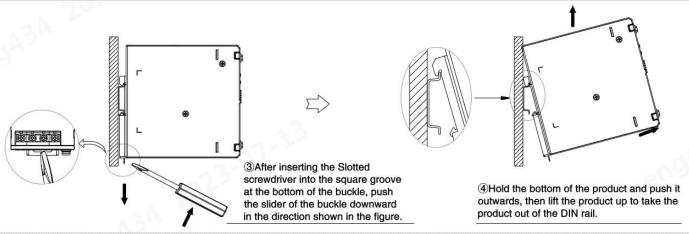
Installation Diagram

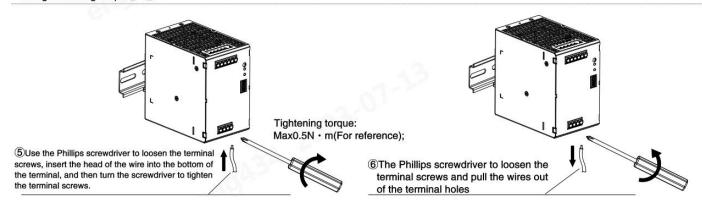


Note: Keep the following installation clearances: 20mm on top, 20mm on the bottom, 5mm on the left and right sides are recommended when the device is loaded permanently with more than 50% of the rated power. Increase this clearance to 15mm in case the adjacent device is a heat source (e.g. another power supply).

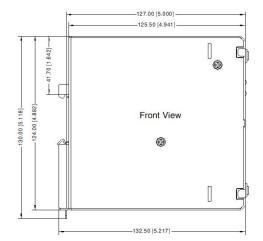


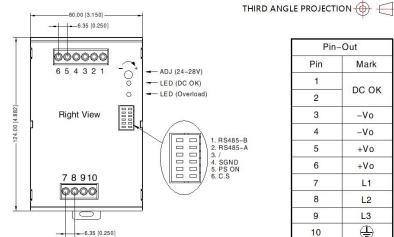

LITF480-26Bxx Series



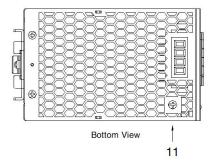

Installation Steps 1-2

Wiring / Unwiring Steps 5-6




MORNSUN®


LITF480-26Bxx Series



Dimensions and Recommended Layout

10, 11 any position must be connected to the earth((1)

Note: Unit: mm[inch]

ADJ: Output adjustable resistor Wire range: Input: 22-10AWG

Output: 24V 14-10AWG 36V 16-10AWG 48V 18-10AWG

Signal: 22-16AWG

Input Tightening torque: Max 0.5 N·m Output Tightening torque: Max 0.5 N-m Mounting rail: TS35, rail needs to

connect safety ground

General tolerances: $\pm 1.00[\pm 0.039]$

AC/DC 480W DIN-Rail Power Supply LITF480-26Bxx Series

WARNING Risk of electrical shock, fire, personal injury or death:

AVERTISSEMENT AVERTISSEMENT Risque de choc électrique, d'incendie, de blessures corporelles ou de décès :

- 1. Do not use the power supply without proper grounding (Protective Earth). Use the terminal on the input block for earth connection and not one of the screws on the housing;
 - N'utilisez pas l'alimentation électrique sans mise à la terre appropriée (Terre protectrice). Utilisez le terminal sur le bloc d'entrée pour la connexion terrestre et non pas une des vis sur le boîtier;
- 2. Turn power off before working on the device, protect against inadvertent re-powering; Éteignez l'alimentation avant de travailler sur l'appareil, protégez-vous contre la réénergisation accidentelle;
- Make sure that the wiring is correct by following all local and national codes;

Assurez-vous que le câblage est correct en suivant tous les codes locaux et nationaux;

- 4. Do not modify or repair the unit;
 - Ne modifiez pas ou ne réparez pas l'appareil;
- 5. Do not open the unit as high voltages are present inside;
 - Ne modifiez pas ou ne réparez pas l'appareil;
- Use caution to prevent any foreign objects from entering the housing;
 - Faire preuve de prudence pour empêcher les objets étrangers d'entrer dans le logement;
- 7. Do not use in wet locations or in areas where moisture or condensation can be expected;
 - Faire preuve de prudence pour empêcher les objets étrangers d'entrer dans le logement;
- Do not touch during power-on, and immediately after power-off, hot surfaces may cause burns; Ne touchez pas pendant l'alimentation et, immédiatement après l'alimentation, les surfaces chaudes peuvent causer des brûlures.
- For ambient temperature \leq 60°C, use \geq 90°C copper wire only; for ambient temperature >60°C to 85°C, use \geq 105°C copper wire only; use only wires with a minimum dielectric strength of 300V (input) and 60V (output);
 - Température ambiante \leq 60°C, utiliser \geq 90°C seulement fils de cuivre; Température ambiante >60°C et 85°C, utiliser \geq 105°C seulement fils de cuivre; Uniquement pour l'ulilisation de fils de cuivre d'une résisitance d'isolation minimale de 300V (d'entrée) et 60V (de sortie).

Note:

- 1. For additional information on Product Packaging please refer to www.mornsun-power.com, Packaging bag number: 58220306;
- Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- The room temperature derating of 3.5° C/1000m is needed for operating altitude greater than 2000m;
- 4. All index testing methods in this datasheet are based on our company corporate standards;
- 5. In order to improve the efficiency at high input voltage, there will be audible noise generated, but it does not affect product performance and reliability;
- 6. We can provide product customization service, please contact our technicians directly for specific information;
- 7. Products are related to laws and regulations: see "Features" and "EMC";
- 8. The out case needs to be connected to the earth(\bigoplus)of system when the terminal equipment in operating;
- The output voltage can be adjusted by the ADJ, clockwise to increase;
- 10. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by aualified units;
- 11. The power supply is considered a component which will be installed into a terminal equipment. All EMC tests should be confirmed with the final equipment. Please consult our FAE for EMC test operation instructions.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China

Tel: 86-20-38601850 Fax: 86-20-38601272 E-mail: info@mornsun.cn www.mornsun-power.com

MORNSUN®

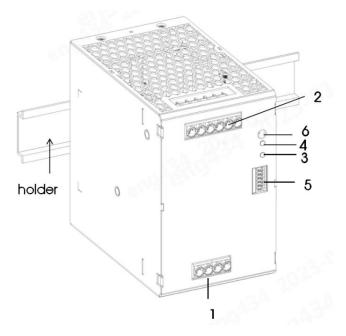
MORNSUN Guangzhou Science & Technology Co., Ltd.

2023.07.13-A/4

Page 7 of 24

LITF480-26Bxx Power Supply Application Notes

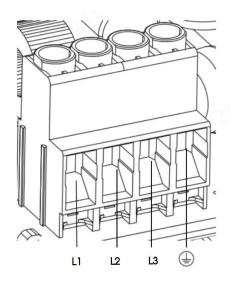
AC/DC 480W DIN-Rail Power Supply LITF480-26Bxx Series



Content

1. Mechanical Specification	10
1.1 Input Terminal (CN1)	10
1.2 Output Terminal (CN2)	11
1.3 Signal Connection Terminal (CN5)	11
1.4 Red And Green Status Display LEDS	12
1.5 Output Voltage Adjustment Knob	12
2. Function Manual	12
2.1 Input Requirements	12
2.2 Output Requirements	13
2.3 Starting Time	13
2.4 Output Over-Voltage Protection (OVP)	13
2.5 Output Over-Current And Short Circuit Protection (OCP And SCP)	14
2.6 Peak Current Capabilities	15
2.7 Over Temperature Protection (OTP)	15
2.8 Output Power Derating	16
2.9 Remote Control Switch	16
2.10 DC OK Signal	17
2.11 Used In Series	17
2.12 Work In Parallel	18
2.12.1 Redundancy	18
2.12.2 Current Share	18
2.13 PC Monitoring	20
2.14 Available In 3-Phase 2-Wire Systems	21
2.15 Back Voltage Load	21
3. Installation Requirements	22
3.1 Safety Introduction	22
3.2 Safety Requirements	22
3.3 Installation Method	22

1. Mechanical Specification

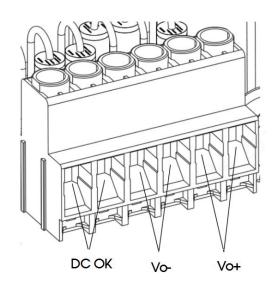


Structure Instruction		
1	Input terminal (CN1)	
2	Output terminal (CN2)	
3	Red status display LED lights	
4	Green status display LED lights	
5	Signal connection terminal (CN5)	
6	Output voltage adjustment knob	

Figure 1: LITF480-26Bxx Appearance Information

1.1 Input Terminal (CN1)

4 Position 6.35 mm Barrier Terminal Blocks is used as Input terminal.

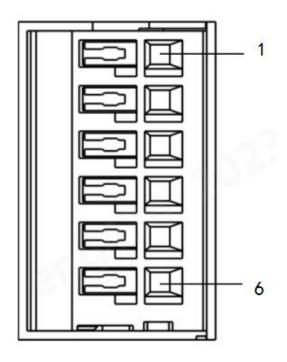

Line size: 22-10AWG Torque: 0.5Nm

Pin	Features
L1	Live
L2	Live
L3	Live
	Protective Earth

1.2 Output Terminal (CN2)

6 Position 6.35 mm Barrier Terminal Blocks is used as Output terminal.

Pin	Features
Vo+	Positive output
Vo-	Negative output
DC OK	Judging output status

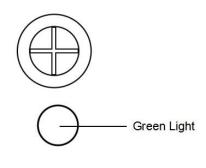

Line size: 14-10AWG (24V)

16-10AWG (36V)

18-10AWG (48V)

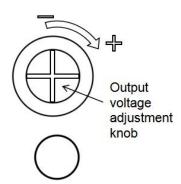
Torque: 0.5Nm

1.3 Signal Connection Terminal (CN5)



Pin	Mark	Features		
1	RS485_B	Serial communication		
2	RS485_A	Serial communication		
3	/	/		
4*	SGND	Signal terminal reference ground		
5	PS ON	Remote control signal		
6	C.S	Current sharing		
Note: *The reference around of all pins on the				

Note: *The reference ground of all pins on the signal terminal is pin 4.


1.4 Red And Green Status Display LEDS

Green Light	Red Light	State*
On Off		Normal work
Off	On	Peak power operation or about to enter over temperature protection
Off Off		Power Off (No AC input) or PS ON Off
Note: *The LFD lights indicate different working states of the power supply		

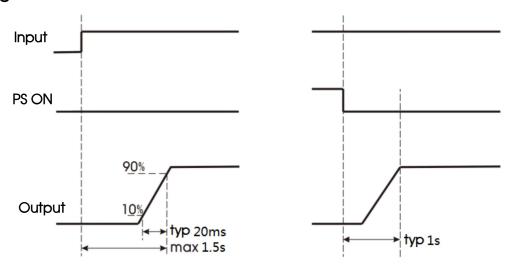
1.5 Output Voltage Adjustment Knob

Model	Rated Output Voltage	Output Voltage Adjustable Range
LITF480-26B24	24VDC	24-28VDC
LITF480-26B36	36VDC	36-42VDC
LITF480-26B48	48VDC	48-56VDC

2.1 Input Requirements

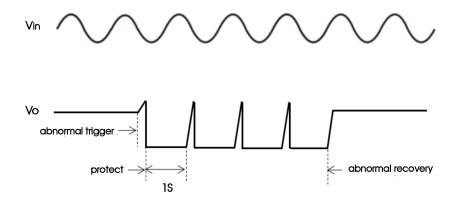
2. Function Manual

The AC input voltage and DC input voltage must be within the defined amount of electricity (reference data sheet), otherwise the power supply may not work properly or even malfunction. A 500V/4A fuse has been connected in series between the L1/L2 /L3 line inside the power supply. For better protection of the module, it is recommended that customers use a circuit breaker of no more than 4A. (Just for strengthen the protective purpose, not essential requirements)

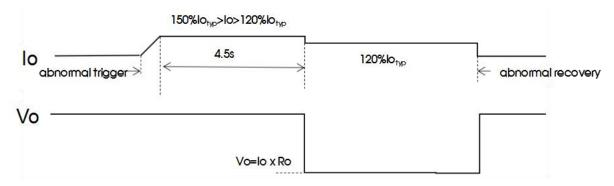

MORNSUN®

2.2 Output Requirements

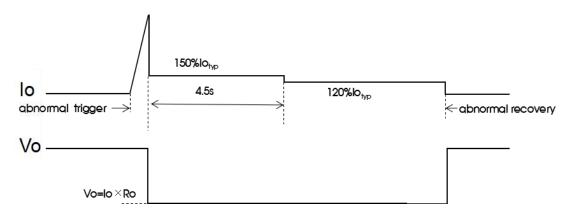
At any output voltage value, if it is necessary to operate normally, the highest pull current and power must not exceed the rated specified value, and the output current must not exceed the maximum output current value.


2.3 Starting Time

Item	Working conditions	Min.	Тур.	Max.	Unit
Start-up delay time	400VAC, full load	-	-	1.5	S


2.4 Output Over-Voltage Protection (OVP)

The main circuit output will be off when the output voltage reaches the over-voltage protection value. When it occurs, the output enters the hiccup mode with 1s. After the abnormal removed, the output returns to normal.



2.5 Output Over-Current And Short Circuit Protection (OCP And SCP)

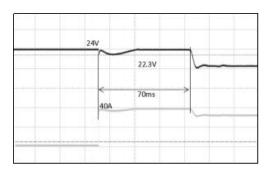
Constant current mode 1

Constant current mode 1: When the output current exceeds 120% of the rated output current, the output will immediately enter the constant current mode, and the current will maintain 150% of the rated output current for 4.5S, and then enter 120% of the rated output current, and the output voltage will drop at the same time, after the abnormal removed, self-recover.

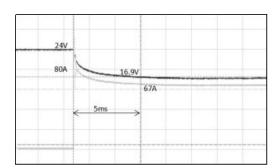
Constant current mode 2

Constant current mode 2: When the output current exceeds 150% of the rated output current, the output will immediately enter the constant current mode, and the current will maintain 150% of the rated output current for 4.5S, and then enter 120% of the rated output current, and the output voltage will drop at the same time, after the abnormal removed, self-recovery.

Note: The output voltage at constant current is determined by the output load, that is, Vo =lo x Ro. Where lo represents the current value at constant current. Ro means output load value.


2.6 Peak Current Capabilities

The power supply is capable of outputting peak currents higher than certain short-term currents (up to several milliseconds).


This feature is helpful for loads with high current demands. Solenoids, contactors, and pneumatic modules typically have steady-state coils and pull-in coils.

Peak current capability also ensures safe operation of the circuit breaker behind the load circuit. The load branches are usually protected separately by circuit breakers or fuses. If a branch circuit is shorted or overloaded, a fuse or circuit breaker requires a certain amount of overcurrent to open in time. This prevents voltage dips in adjacent circuits.

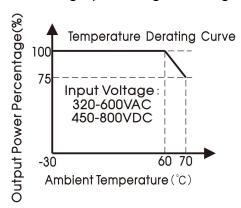
When the output current is large, there will be a voltage sag at the output terminal, while maintaining a large current output for a certain period of time, see the figure below for details.

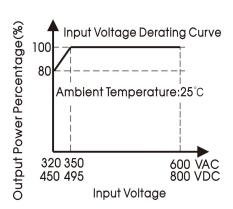
40A peak load (resistive) for 70ms, the output voltage drops from 24V to 22.3V

80A peak load (resistive) for 5ms, the output voltage drops from 24V to 16.9V

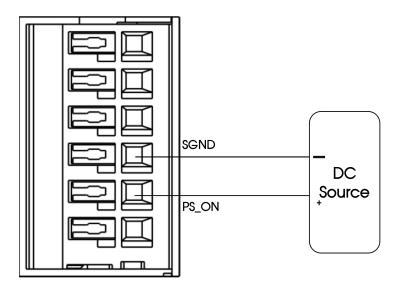
Voltage dip at peak current	Typical value	From 24V to 22.3V	40A, 70ms duration, resistive load
Vollage dip at peak cultern	Typical value	From 24V to 16.9V	80A, 5ms duration, resistive load

2.7 Over Temperature Protection (OTP)


When the ambient temperature of the power supply exceeds the rated temperature for a period of time, the power supply will turn off the output and enter the hiccup state. After the ambient temperature drops to the set value, the power supply will resume normal operation.



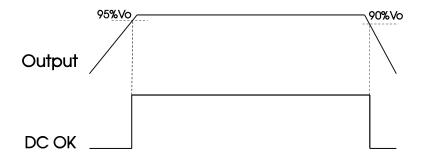
2.8 Output Power Derating


When the input voltage is greater than 350VAC (or 495VDC), only need to derate according to the temperature derating curve;

When the input voltage is lower than 350VAC (or 495VDC), the output power will be derated according to the following input voltage derating curve requirements after the temperature derating.

2.9 Remote Control Switch

Between PS ON (Pin5) and SGND (Pin4) Switch	Output Status
DC Source power supply voltage is less than 0.8VDC	Normal output
DC Source supply voltage is greater than 4VDC less than 20VDC	Output Off


If the power module is connected to the power supply, it can be controlled by the external voltage between the PS ON signal pin and SGND.

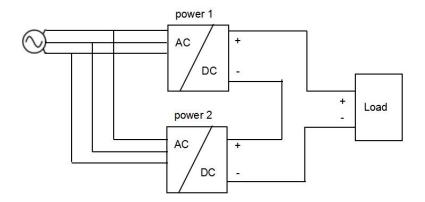
MORNSUN®

2.10 DC OK Signal

The DC OK signal is used to monitor whether the power supply is working normally. This signal is on the DC OK pin of the output terminal CN2. When the output is greater than 95% of the rated voltage of the output, the DC OK signal is activated, the DC OK at the output terminal is connected, and the green light is on at the same time. When the output voltage is less than 90% of the rated voltage of the output, the DC OK of the output terminal is disconnected, and the green light is off at the same time.

2.11 Used In Series

The same type of power supply can be connected in series with each other to increase the output voltage. Under the premise that the total output does not exceed 150VDC, any number of power supplies can be connected inseries as needed. Voltages in excess of 60VDC are no longer considered Safety Extra Low Voltage Circuits (SELV) and can therefore be dangerous. When installing such voltages, it must be protected against touch.


Please avoid generating feedback voltage to the output terminals (eg from a decelerating motor or battery).

Keep a 15mm (left/right) installation gap between the two power supplies and avoid installing the power supplies on top of each other. Do not connect the power supplies in series in an installation orientation other than the standard installation orientation (input terminals down).

Note that leakage current, electromagnetic interference, inrush current and harmonics will increase when multiple power supplies are used.

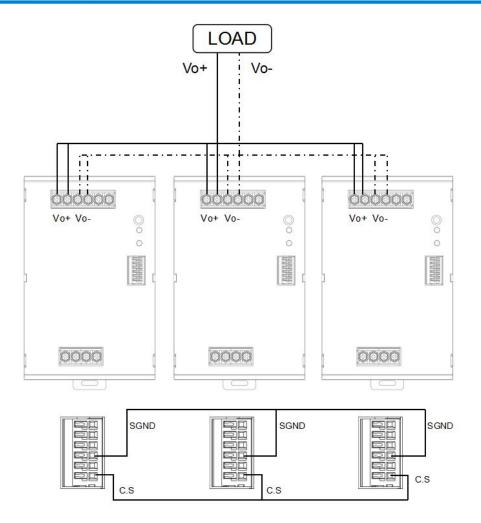
Refer to the figure below for the wiring method:

2.12 Work In Parallel

2.12.1 Redundancy

Power module outputs can be connected in parallel for redundancy, increasing system reliability. The maximum power of the redundant system needs to be de-rated to ensure that the redundant system can still meet the rated load requirements when a power supply module fails. Currently, the common practice is to build a redundant system by the N+1 method, that is, N+1 power supplies are connected in parallel. Support the maximum load current N*lomax, where lomax is the rated output current of each power supply, for example, the rated output current of each power supply is 20A, and 2+1 are connected in parallel, thus constructing a 2*20A=40A redundant system.

The power module supports 2+1 parallel redundant operation.


The Oring circuit is used inside the power module, and when any one of the power modules in parallel fails, it will not affect the work of other power modules.

2.12.2 Current Share

The current sharing bus (current_share) between multiple machines is short-circuited with each other, and SGND is short-circuited with each other at the same time.

The output voltage difference of each single module is less than or equal to 100mV, and a better comprehensive effect of line terminal output voltage and current sharing can be obtained. The wiring method of the current sharing function is shown in the following figure:

Note: 1. When used in parallel, the number of parallel modules cannot exceed 3.

2. When the power modules work in parallel, there is an active current sharing circuit inside to ensure that the current between each module remains balanced.

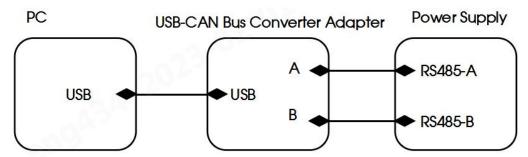
The active current sharing circuit adopts the automatic master-slave current sharing method. Each power supply module has a current sharing bus signal (C.S). When working in parallel, the current sharing buses of all power modules must be connected together. The current sharing bus signal is located at pin 5 of CN5. At the same time, it is necessary to connect the signal terminals SGND of the power module together, and the SGND of the signal terminal is located at pin 4 of CN5.

The output voltage of each power module will affect the current sharing accuracy. The output voltage of the power module is rated voltage ± 100 mV. In practical applications, if the output voltage value needs to be adjusted, the output voltages of all parallel power modules need to be adjusted to the same voltage. The recommended voltage range is: target voltage value ± 100 mV.

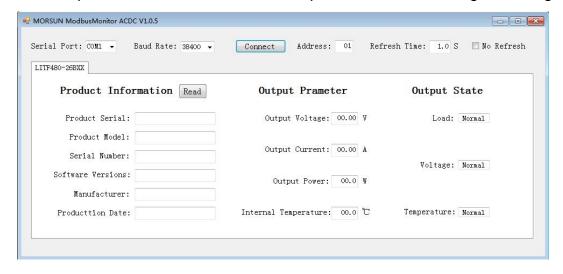
After the output load of each power module is greater than 50% of the rated load, the current sharing

accuracy is required to be ±5%. The calculation formula of current sharing is:

Power supply 1's average accuracy =
$$\frac{Io_1 - (Io_1 + Io_2)/2}{(Io_1 + Io_2)/2} *100\%$$


Power supply 2's average accuracy=
$$\frac{Io_2-(Io_1+Io_2)/2}{(Io_1+Io_2)/2}*100\%$$

lo1: The output current value of the power supply 1 in the parallel power module;

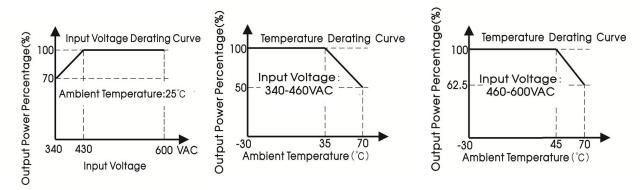

lo₂: The output current value of the power supply 2 in the parallel power module.

2.13 PC Monitoring

In a parallel system, if you need to identify the information of the power modules, you need to monitor each parallel power module by the host computer. The connection diagram is as follows:

That is: Connect the RS485-A and RS485-B of the signal terminal to the USB interface module When the host computer communication is turned on, you can see the following monitoring screen

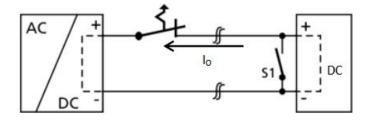
Note: After the serial port is successfully opened, the information of "output parameter" and "output state" will be automatically obtained, and the "product information" needs to be manually clicked on the read case after the "product information".


MORNSUN®

2.14 Available In 3-Phase 2-Wire Systems

This power supply can also be used for permanent operation of two-wire in a three-phase system.

When operating the two-wire in a three-phase system, the output power must be derated according to the following curve, and the input operating voltage can only operate at 340VAC-600VAC. Exceeding this derating limit for a long time will cause the power supply to overheat and shut down.



Note: Basic performance such as electromagnetic compatibility performance, hold-up time, loss and output ripple are different from three-phase operation. This working method is not covered in the certification, and operation two wires in a three-phase system does not meet the safety certification.

2.15 Back Voltage Load

Loads such as decelerating motors, inductors can feed voltage back into the power supply. This property is also known as feedback voltage resistance or resistance to opposing electromagnetic forces.

The power supply is resistant to voltage back into the supply by the load and will not fail regardless of whether the power supply is on or off. The function diagram as below:

Maximum allowable feedback voltage		
Model	Maximum feedback voltage	
LITF480-26B24	35VDC	
LITF480-26B36	63VDC	
LITF480-26B48	63VDC	

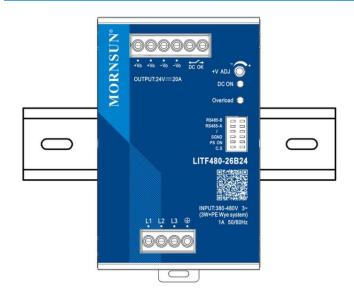
3. Installation Requirements

3.1 Safety Introduction

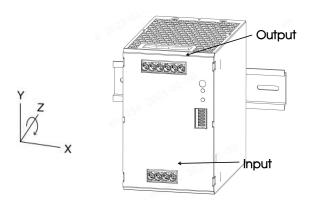
WARNING: RISK OF ELECTRIC SHOCK DURING HIGH VOLTAGE WORKING WITH THIS EQUIPMENT

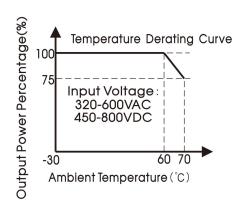
- After the power module is disconnected from the input AC or DC power, leave it for at least one minute before starting to operate it.
- When installing the input cable to the power module, first connect the ground terminal, and then connect the L1, L2 and L3 cables.
- When removing the input wire, first remove the L1 wire, L2 wire and L3 wire, and then remove the ground wire.
- When disassembling and assembling, make sure that no objects fall into the inside of the power module.
 - Be careful of high temperature burns
- After the power module works in a high temperature environment, wait for its shell to cool before operating it.
- This product needs to be installed by professionals and needs to be used with other equipment.

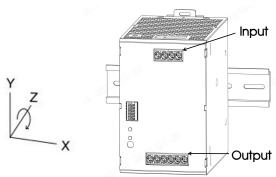
3.2 Safety Requirements

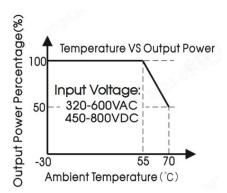

When installing, pay attention to the primary side and the protective ground. The creepage distance and electrical clearance of the primary side and the secondary side meet the safety requirements, refer to EN/UL61010.

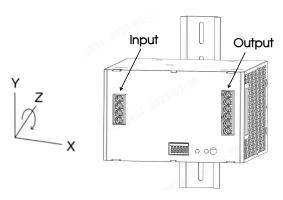
3.3 Installation Method


Installation direction: When installing, the port of the output end should be upward, and the port of the input end should be downward. (See below)

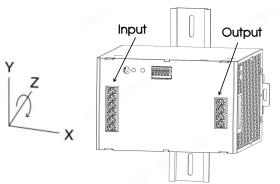

Note: Pay attention to the temperature rise of the device in different installation modes. Derate the device according to the actual situation.



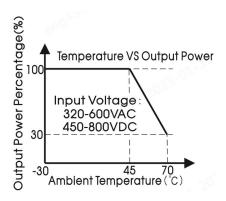


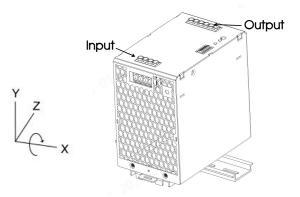

Rotate the installation position (0° Z-Axis)

Rotate the installation position (180° Z-Axis)

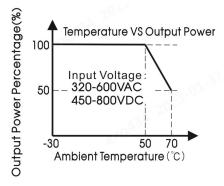


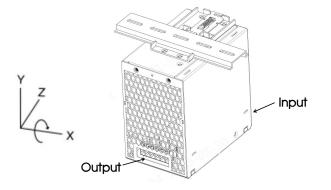
Temperature VS Output Power


100
Input Voltage:
320-600VAC
450-800VDC


Ambient Temperature (°C)

Rotate the installation position (90° Z-Axis)




Rotate the installation position (270° Z-Axis)

Rotate the installation position (90° X-Axis)

Temperature VS Output Power

100

Input Voltage:
320-600VAC
450-800VDC

-30

Ambient Temperature (°C)

Rotate the installation position (270° X-Axis)